Scientific objectives
- Design of functional micro-, nano-structures : development of non-conventional preparation methods for the elaboration of micro/nanostructures based on self-assembly, wetting and photopolymerization.
- Mecanisms and reactivity : study of the physical, physicochemical and chemical processes that are involved during the preparation
- Properties of molecular, micro- and nanopatterned systems : New properties resulting from the patterning, new patterned functional materials, multifunctional structures
- Applications : sensors, microsensors, optics, photonics, biology, biomimicry, MEMS, microfluidics
Permanent members
Valery LUCHNIKOV
Research Scientist
➜ CV
Jean-Pierre MALVAL
Assistant professor
➜ CV
Karine MOUGIN
Assistant professor
➜ CV
Non-permanent members
Research Fields
Self-assembly of polymer materials or micro-nano-particles
S.Gree, L.Josien, V.Luchnikov, J.-P. Malval, K.Mougin
Self-assembly and controlled deformation of polymer thin films are used to prepare surfaces with chemical contrast or curvature at the micro and nanometric scales. Patterned surfaces allow the controlled deposition of metal nanoparticles for applications in sensors. Curved polymer thin films can form microtubes with practical applications for drug delivery.
Reprinted with permission from [Time-programmed release of fluoroscein isocyanate dextran from micro-pattern-designed
polymer scrolls, A. I. Egunov, A. Inaba,S. Gree, J-P. Malval, K. Tamura, Y. Saito., V. A. Luchnikov ; The Journal of Controlled Release 2016, 233, 39] © 2016 Elsevier B.V.
Publications
M. Rajab, K. Mougin, M. Derivaz, L. Josien, V. Luchnikov, J. Toufaily, K. Hariri, T. Hamieh, R. Lohmus, H. Haidara Colloids and Surfaces A-Physicochemical and Engineering Aspects 2015, 484, 508 DOI : 10.1016/j.colsurfa.2015.08.035
A. Egunov, A. Inaba, S. Gree, J.-P. Malval, K. Tamura, Y. Saito, V. Luchnikov The Journal of Controlled Release 2016, 233, 39 DOI : 10.1016/j.jconrel.2016.05.022
Liquid-solid interfaces on complex surfaces, wetting, dewetting
M.Nardin, L.Vonna
Interparticle interactions between micro- and nano-objects are characterized to investigate the cohesion of particles-based materials. Liquid-solid interfaces at the microscale are also considered to study wetting and dewetting on micro-nano-patterned surfaces.
Publications
V. Hisler, H. Jendoubi, C. Hairaye, L. Vonna, V. Le Houérou, F. Merme, M. Nardin, H. Haidara Langmuir 2016, 32, 7765 DOI : 10.1021/acs.langmuir.6b01886
Photochemistry, photophysics, photoinduced molecular processes
C.Ecoffet, J.-P. Malval, O. Soppera, A. Spangenberg
This fundamental activity is aimed at investigating the photophysical properties of chromophores and fluorophores that are integrated as molecular modules in supramolecular systems with advanced functionalities such as molecular recognition, 2-photon polymerization photoinitiation, etc…
Publications
R.J. Xia, J.-P. Malval, M. Jin, M., A. Spangenberg, D.C. Wan, H.T. Pu, T. Vergote, F. Morlet-Savary, H. Chaumeil, P. Baldeck, O. Poizat, O. Soppera Chem. Mater. 2012, 24, 237
Reproduced from [Enhancement of Acid Photogeneration Through a Para-to-Meta Substitution Strategy in a Sulfonium-Based Alkoxystilbene Designed for Two-Photon Polymerization; R. Xia, J.-P. Malval, M. Jin, M., A. Spangenberg, D.C. Wan, H.T. Pu, T. Vergote, F. Morlet-Savary, H. Chaumeil, P. Baldeck, O. Poizat, O. Soppera; Chem. Mater. 2012, 24, 237] Copyright © 2012, American Chemical Society
Photopolymers and functional materials for photostructuration
D.Berling, J.-P.Malval, O.Soppera, A.Sprangenberg
Original functional materials compatible with photopatterning are developed to obtain multifunctional micro-nano-structures. Among others, photo-materials, molecularly imprinted polymers (MIP), hybrid materials with electrical or magnetic properties, sol-gel materials for optical or photonic application were prepared and patterned with our different photoinduced micro-nano-patterning setups.
Reproduced from [A Versatile Fiber-Optic Fluorescence Sensor Based on Molecularly Imprinted Microstructures Polymerized in Situ. X. A. Ton, B. T. S. Bui, M. Resmini, P. Bonomi, I. Dika, O. Soppera, K. Haupt, Y. Fuchs; Angewandte Chemie-International Edition 2013, 52, 8317] © 2013 Wiley-VCH
Reprinted with permission from [ Deep ultraviolet laser direct write for patterning sol-gel InGaZnO semiconducting micro/nanowires and improving field-effect mobility; H-Cheng Lin, F. Stehlin, O. Soppera, H.-W. Zan, C.-H. Li et al. Scientific Reports 2015, 5, 10410 ] Copyright © 2015, Rights Managed by Nature Publishing Group
Publications
X. A. Ton, B. T. S. Bui, M. Resmini, P. Bonomi, I. Dika, O. Soppera, K. Haupt, Y. Fuchs Angewandte Chemie-International Edition 2013, 52, 8317 DOI : 10.1002/anie.201301045
H.-C Lin, F. Stehlin, O. Soppera, H.-W. Zan, C.-H. Li, F. Wieder, A. Ponche, D. Berling, B.-H. Yeh, K.-H. Wang Scientific Reports 2015, 5, 10410 DOI : 10.1038/srep10490
L.P. Chia Gomez, A. Spangenberg, X.A. Ton, Y. Fuchs, F. Bokeloh, J.P. Malval, B. Tse Sum Bui, D. Thuau, C. Ayela, K. Haupt, O. Soppera Advanced Materials 2016, 28, 5931 DOI : 10.1002/adma.201600218
Unconventional photostructuration processes
J.-P. Malval, B.Leuschel, O. Soppera, A. Spangenberg
New original strategies for light-induced micro- and nano-fabrication have been developed. Some recent examples include laser direct-writing, 3D printing, 2-photon stereolithography, interferometry lithography, optical near-field lithography, self-guiding lithography… Photoresists compatible with these fabrication processes can cover a wide range of wavelengths from Deep-UV to Near-Infrared.
Crédit Damien Thuau
Publications
L. P. Chia Gomez, A. Spangenberg, X. A. Ton, Y. Fuchs, F. Bokeloh, J.-P. Malval, B. Tse Sum Bui, D. Thuau, C. Ayela, K. Haupt, O. Soppera Advanced Materials 2016, 28, 5931 DOI : 10.1002/adma.201600218
N. Buch-Månson, A. Spangenberg, L.P. Chia Gomez, J.P. Malval, O. Soppera, K. Martinez Scientific Reports 2017, 7, 9247
Specific Facilities
Banc de stéréolithographie biphotonique multilongueur d’onde incluant une source femtoseconde accordable (avec doubleur de fréquence) couplée dans un microscope optique avec système automatisé de micropositionnement (x,y,z) contrôlé par ordinateur (système Microlight 3D)
Banc de stéréolithographie biphotonique commercial (Microlight 3D) avec une excitation à 532 nm.
Banc Optique pour la mesure de sections efficaces à 2 photons (par z-scan et fluorescence)
Sécheur CO2 supercritique pour développement.
Banc de lithographie DUV interférentielle (résolution 50 nm à 1000 nm) comprenant un laser excimère et un dispositif d’irradiation interférométrique (masques de phase) avec système de microdéplacement automatisé.
Mesure de propriétés magnéto-optiques par effet Kerr et Faraday.
2 bancs de lithographie en sortie de fibre optique pour fonctionnalisation de fibre optiques (composants photonique, capteurs) ou liaison fibre-fibre par photopolymérisation (longueurs d’onde : 375, 405, 532, 633, 780, 850 nm).
Microspectroscopie de fluorescence avec spectroscope et caméra sensible.
Ellipsométrie et ellipsométrie spectroscopique (DUV, visible, NIR) avec contrôle de température et d’atmosphère et possibilité d’irradiation in situ.
Station de mesure électrique (4 pointes).
Spectroscopie RTFTIR pour suivi de cinétiques de photopolymérisation, fluorimétrie, spectroscopie d’absorption.
Microscopes à Force Atomiques multimodes dont un avec contrôle environnemental et pulsed Force Mode et un avec mesures électriques (Resiscope).
Microscopes à Force Atomiques multimodes dont un avec contrôle environnemental et pulsed Force Mode et un avec mesures électriques (Resiscope).
Dispositif de découpe par laser CO2 (Gravograph LASER LS-100)
Microscopie haute-vitesse d’acquisition d’images.
Goniomètres pour mesure d’énergie de surface.
Spectromètre d’adsorption UV-vis
Laser CO2 pour patterning
Spectrofluorimètre
Ellipsomètre monolongueur 532nm
Main collaborators
National
Institut Charles Sadron (Strasbourg)
INSERM UMR-S 1121 (Strasbourg)
Faculté de Pharmacie, Université de Strasbourg (Strasbourg)
ENS Lyon (Lyon)
ECP Paris
Université Saint-Etienne
Université Marseille
UTT (Troyes)
UTC (Compiègne)
LAAS (Toulouse)
Université Bordeaux
Internationales
Otto-Schott-Institut fur Materialforschung (Germany)
KIT Karlsruhe (Germany)
Amsterdam (The Netherlands)
Univ Copenhagen (Denmark)
Univ Porto (Portugal)
Univ Tokyo, Tokyo (Japan)
Mahidol University, Bangkok (Thailand)
NCTU Hsinchu (Taiwan)